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GLOBAL ENERGY BALANCE
Global and annual average energy fluxes in watts per square mete
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ATMOSPHERIC
RADIATION

Energy per area per
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RADIATIVE FORCING OF CLIMATE CHANGE

A change in a radiative flux term in Earth’s
radiation budget, F, W m2.

Working hypothesis:
On a global basis radiative forcings are additive and

fungible.
e This hypothesis 1s fundamental to the radiative
forcing concept.

e This hypothesis underlies much of the assessment of
climate change over the industrial period.
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ATMOSPHERIC CARBON DIOXIDE IS INCREASING
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GREENHOUSE GAS FORCINGS OVER THE INDUSTRIAL PERIOD

2.5

Total /

N
o
\

\

—_
(&)
\
RN

\

Forcing relative to 1850, W m2
o
|
|
|

o
o
\

\

CHy

_——  CFC-11
NoO Other\\ B

S e

1850 1875 1900 1925 1950 1975 2000

Data: GISS



THE “BIBLE” OF CLIMATE CHANGE RESEARCH

CLIMATE CHANGE 2001

The Scientific Basis

Contribution of Working Group | to the Third Assessment ¢
Report of the Intergovernmental Panel on Climate Change *
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Cambridge University Press, 2001



RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD

IPCC (2001)
Greenhouse gases only

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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CLIMATE RESPONSE

The change in global and annual mean temperature,
AT, K, resulting from a given radiative forcing.

Working hypothesis:
The change in global mean temperature depends on
the magnitude of the forcing, not its nature or its
spatial distribution.

AT =AF

CLIMATE SENSITIVITY

The change in global and annual mean temperature per
unit forcing, A, K/(W m-2).



TOP-LEVEL QUESTION IN
CLIMATE CHANGE SCIENCE

® How much will the global mean temperature change?
AT =AF
where F is the forcing and A is the climate sensitivity.

- A forcing is a change in a radiative flux component, W m™.

- Forcings are thought to be additive and fungible.

e What is Earth’s climate sensitivity?
- National Academy Report (Charney, 1979): @ 4 W @

¢ ¢ We estimate the most probable global warming for a doubling of CO, to
be near 3 degrees C, with a probable error of plus or minus 1.5 degrees.

- Intergovernmental Panel on Climate Change (IPCC, 2001 ):

¢ ¢ Climate sensitivity [to CO, doubling] is likely to be in the range
1.5t0 4.5°C.

This uncertainty is not very useful for policy planning.
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HOW CAN CLIMATE SENSITIVITY BE DETERMINED?
Climate sensitivity A = AT / F

e Climate models evaluated by performance on prior climate change,
and/or

o Empirical determination from prior climate change.

e Either way, AT and F must be determined with sufficiently small
uncertainty to yield an uncertainty in A that is useful for informed
decision making.



CLIMATE CHANGE SENSITIVITY
Summary of 15 Current Models

Quantity, Unit Mean Standard Range
Deviation
A, K/(W m-2) 0.87 0.23 0.5-1.25
AT, K 3.5 0.9 2-5

IPCC Climate Change 2001, Cambridge University Press, 2001



EMPIRICAL CLIMATE SENSITIVITY

Greenhouse forcing over the industrial period is 2.5 W m-2
Temperature increase over the industrial period 1s 0.6 K.
Empirical Sensitivity:

dT 0.6 K

= T sw 5=024K / (Wm™®) or AT=1K
. m

A

Why is the empirical sensitivity so much lower than
model-based estimates?



AEROSOL.: A suspension of particles in air

T T o e L™ T b ™

" 2001-04-22-17:28
SeaWiF'§ Project, NASA/Goddard Space Flight Center, and ORBIMAGE

Atmospheric aerosols may result from primary emissions (dust, smoke)
or from gas to particle conversion in the atmosphere (haze, smog).



RADIATIVE FORCING OF CLIMATE CHANGE BY AEROSOLS
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AEROSOL INFLUENCES ON
RADIATION BUDGET AND CLIMATE

Direct Effect (Cloud-free sky)
Light scattering -- Cooling influence
Light absorption -- Warming influence, depending on surface

Indirect Effects (Aerosols influence cloud properties)
More droplets -- Brighter clouds (Twomey)
More droplets -- Enhanced cloud lifetime (Albrecht)

Semi-Direct Effect
Absorbing aerosol heats air and evaporates clouds



DIRECT EFFECT



BIOMASS BURNING AND WIDESPREAD AEROSOL
Northeastern Oklahoma, 2000-12-01




DIRECT RADIATIVE FORCING DUE TO ANTHROPOGENIC SULFATE AEROSOL

Aerosol Optical Depth
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Aerosol Column Burden
Microphysics Atmospheric Chemistry

AFg is the area-average shortwave radiative forcing due to the aerosol, W m-2
Fry is the solar constant, W m-2

A, 1s the fractional cloud cover

T is the fraction of incident light transmitted by the atmosphere above the aerosol
R; 1is the albedo of the underlying surface

B is upward fraction of the radiation scattered by the aerosol,

g2 is the scattering efficiency of sulfate and associated cations at a reference low relative humidity, m? (g SO%{)'1
f(RH) accounts for the relative increase in scattering due to relative humidity

Os0, 1s the source strength of anthropogenic SO g S yr-1

Y502~ is the fractional yield of emitted SO that reacts to produce sulfate aerosol

MW is the molecular weight

T30 is the sulfate lifetime in the atmosphere, yr

A is the area of the geographical region under consideration, m2

Charlson, Schwartz, Hales, Cess, Coakley, Hansen & Hofmann, Science, 1992



EVALUATION OF GLOBAL MEAN DIRECT RADIATIVE
FORCING DUE TO ANTHROPOGENIC SULFATE

- Central - Uncertainty
Quantity  Value Units Factor
Fr 1370 W m2 —
1-A. 0.4 — 1.1
T 0.76 — 1.15
1-Rg 0.85 — 1.1
B 0.29 — 1.3
of = 8.5 asor | 3 m2 (g SO5 ) 1.5
m2 (g SO77)!| | f(RH) 1.7 S 1.2
QSO2 80 Tg S yr‘1 1.15
Column
Y502~ 0.4 — 1.5
Burden
) TSO4_ 0.02 yr 1.5
4 mgSO; m2
S A 5%1014  m? _
Optical | =
Depth AFp -1.1 W m2 2.4
=0.03

]1/ 2 Penner, Charlson, Hales, Laulainen, Leifer, Novakov,

Total uncertainty factor evaluated as f; = exp[z(log /) Ogren, Radke, Schwartz & Travis, BAMS, 1994



DIRECT AEROSOL FORCING AT TOP OF ATMOSPHERE

Dependence on Aerosol Optical Thickness

Comparison of Linear Formula and Radiation Transfer Model

Particle radius » = 85 nm; surface reflectance R = 0.15; single scatter albedo wo = 1.
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Global-average AOT 0.1 corresponds to global-average forcing -3.2 W m-2.



AEROSOL OPTICAL DEPTH

Determined by sunphotometry
North central Oklahoma - Daily average at 500 nm
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MONTHLY AVERAGE AEROSOL JUNE 1997

Polder radiometer on Adeos satellite
Optical Thickness 7
A =865 nm
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Influence of Pinatubo Eruption on Aerosol Forcing and Global Temperature

Stratospheric Aerpsol Optical Depth (zonal mean
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GLOBAL TEMPERATURE TREND OVER THE INDUSTRIAL PERIOD
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LIGHT SCATTERING EFFICIENCY

Dependence on particle radius -- Size matters!

Ammonium Sulfate, 530 nm
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WATER UPTAKE BY HYGROSCOPIC PARTICLE
Dependence on relative humidity
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LIGHT SCATTERING EFFICIENCY OF (NH4)2S04
DEPENDENCE ON PARTICLE SIZE AND RH

m* (g SO5 )1

*
O\< D)

1@183 1@17 1@1© 1@15 1@14

moles(S0; ) /particle

0.0 0.05 0.10 0.25 0.50 0.751.00
Dry Radius, R, (um)

Nemesure et al., JGR, 1995
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UPSCATTER FRACTION

Dependence on solar zenith angle and particle radius
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For sun at horizon 3 = 0.5 (by symmetry).

For small particles, r<< A, upscatter fraction approaches that for Rayleigh scattering (0.5).



HEMISPHERIC DISTRIBUTION OF
SULFATE COLUMN BURDEN

Vertical integral of concentration
July 14, 1997, 1800 UTC
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COMPARISON OF MODEL AND OBSERVATIONS

Comparisons for 24-hr sulfate mixing ratio at surface
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MODEL-OBSERVATION COMPARISONS

5083 24-Hour sulfate mixing ratio in BNL CTM driven by
assimilated meteorological data - June-July 1997
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56% of comparisons within factor of 2. 92% within factor of 5.



SULFATE MODEL INTERCOMPARISON

Annual average non-seasalt sulfate in 11 chemical transport
models and comparison with observations at nine stations
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CLIMATE CHANGE 2001
The Scientific Basis

Non-seasalt Sulfate (ug/m 3)

& A A
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Penner et al., IPCC, 2001

“Most models predict surface-level seasonal mean sulphate aerosol mixing ratios to within .
“We cannot be sure that these models achieve reasonable success for the right reasons.”
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“Most models predict surface-level seasonal mean sulphate aerosol mixing ratios to within 20%.”
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“We cannot be sure that these models achieve reasonable success for the right reasons.”


DO YOU HAVE A FEW MOMENTS"

The Problem

How to represent the size-distribution of
atmospheric aerosols and its evolution in
chemical transport models

The Solution

Represent the size distribution in terms of
its low-order moments

oo k AN
e = Jy 4 C D



APPLICATION TO SULFATE IN
EASTERN NORTH AMERICA

Simulations: 40 days, 19 July to 28 August 1995.

Comparison with observations: Sulfate mass
concentration, aecrosol number concentration and size
distributions at the Great Smoky Mountains National
Park during Southeastern Aerosol and Visibility Study.

Limitation: Model 1s for sulfate only; size measurements
are for entire aerosol, not just sulfate.



TIME SERIES COMPARISON FOR AEROSOL MOMENTS
Look Ridge, Great Smoky Mountains TN (84° W, 36° N; 900 m) during SEAVS
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SIZE DISTRIBUTIONS

Comparison of Measurement and Retrieval from Model
At 3 Altitudes near Nashville TN
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INTERCOMPARISON OF BROADBAND SHORTWAVE
FORCING BY AMMONIUM SULFATE AEROSOL

Normalized global-average forcing: W m-2 / g(SO%{) m-2 or W /g(SO%{)
Aerosol optical depth 0.2; surface albedo 0.15
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Standard deviation ~8% for 15 models at radius ~ 200 nm.

Boucher, Schwartz and 28 co-authors, JGR, 1998



RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD

IPCC (2001)
GHG’s and sulfate aerosol direct effects

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD

IPCC (2001)
GHG's and aerosol direct effects

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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INDIRECT EFFECT



DEPENDENCE OF CLOUD ALBEDO ON CLOUD DEPTH

Influence of Cloud Drop Radius and Concentration
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Twomey, Atmospheric Aerosols, 1977



A(Cloud-Top Albedo)
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MODELED SULFATE COLUMN BURDEN
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Schwartz, Harshvardhan &Benkovitz, PNAS, 2002



AVHRR IMAGES APRIL 2-8, 1987
Channel 1, Visible, 0.58-0.68 um

Channel 1 _ _ 1528 UTC 2 April 1987 Thanne 1 ___ W17 UTC § April ‘987 Thanne 1 ] ] 3 Channeg 1

(

Harshvardhan, Schwartz, Benkovitz and Guo, J Atmos Sci, 2002



Cloud Optical Depth T,

CLOUD OPTICAL DEPTH
Dependence on Liquid Water Path

25°-30°W, 50°-55°N  April 2-8, 1987
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CLOUD-TOP ALBEDO

Dependence on Liquid Water Path
25°-30°W, 50°-55'N  April 2, 5 and 7,1987
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CDNC (cm-3)

CLOUD DROPLET NUMBER CONCENTRATION

Dependence on Non-Seasalt Sulfate
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SHORTWAVE FORCING, ANNUAL AVERAGE

GHG's + O3 + Sulfate (Direct and Indirect)
Two Formulations of Cloud Droplet Concentration

90N (a)1.75 Direct + Indirect (Method Il) + GHG + O, W m?2

60N

30N

180 120w 60W 0 60E 120E 180
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I T I
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Kiehl et al., JGR, 2000



RADIATIVE FORCING OVER THE INDUSTRIAL
IPCC (2001)
GHG's and aerosol direct and indirect effects

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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WHY SO LARGE UNCERTAINTY IN
AEROSOL FORCING?

o Uncertainties in knowledge of atmospheric composition

Mass loading and chemical and microphysical properties and cloud
nucleating properties of anthropogenic aerosols, and geographical
distribution.

At present and as a function of secular time.

o Uncertainties in knowledge of atmospheric physics of aerosols

Relating direct radiative forcing and cloud modification by aerosols to
their loading and their chemical and microphysical properties.

The Department of Energy Is Initiating a new resec
program examining aerosol chemistry and physics
pertinent to radiative forcing of climate change.


steve
The Department of Energy is initiating a new research program examining aerosol chemistry and physics pertinent to radiative forcing of climate change.


RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD
IPCC (2001)

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD
IPCC (2001)

With total aerosol forcing

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD
IPCC (2001)

With total aerosol forcing

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD

IPCC (2001)

With total aerosol forcing and total forcing

Total
The global mean radiative forcing of the climate system Forcing
for the year 2000, relative to 1750
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With total aerosol forcing and total forcing and uncertainties Total

The global mean radiative forcing of the climate system Forcing

for the year 2000, relative to 1750
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With total aerosol forcing and total forcing and uncertainties Total

The global mean radiative forcing of the climate system Forcing

for the year 2000, relative to 1750
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REPRESENTING AEROSOL
INFLUENCES
IN CLIMATE MODELS



FORCING AND RESPONSE IN THE UK MET OFFICE MODEL (1995)
Model sensitivity = 2.5 K per CO2 doubling; sulfate direct forcing only, -0.6 W m2 (1990)
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“Inclusion of sulphate aerosol forcing improves the simulation of global mean
temperature over the last few decades.” -- Mitchell, Tett, et al., Nature, 1995



FORCING AND RESPONSE IN THE CANADIAN CLIMATE MODEL (2000)
Model sensitivity = 3.5 K per CO2 doubling; su}fate direct forcing only, -1.0 W m2 (1990)
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“Observed global mean temperature changes and those simulated for GHG + aerosol
forcing show reasonable agreement.” -- Boer, et al., Climate Dynamics, 2000



FORCING AND RESPONSE IN THE GFDL MODEL (2000)
Model sensitivity = 3.4 K per CO2 doubling; sulfate forcing, -0.62 W m-2 (1990)
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“The surface temperature time series from the five GHG-plus-sulfate integrations
show an increase over the last century, which is broadly consistent with the
observations.” -- Delworth & Knutson, Science, 2000



FORCING AND RESPONSE IN THE NCAR MODEL (2003)
Model sensitivity = 2.18 K per CO2 doubling; sulfate direct forcing only, -0.6 W m-2 (1990)
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“The time series from GHG + sulfates + solar shows reasonable agreement with the
observations.” -- Meehl, Washington, Wigley et al., J. Climate, 2003.



FORCING AND RESPONSE IN THE UK MET OFFICE MODEL (2000)

Model sensmVlty 345K per C02 doubhng, sulfate + indirect forcmg, -1.1 W m2 (1990)
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“The ALL ensemble captures the main features of global mean temperature
changes observed since 1860.” -- Stort, Tett, Mitchell, et al., Science, 2000



[PCC-2001 STATEMENTS ON DETECTION
AND ATTRIBUTION OF CLIMATE CHANGE

¢¢ Simulations that include estimates of natural and
anthropogenic forcing reproduce the observed large-
scale changes in surface temperature over the 20th
century.

¢¢ Most model estimates that take into account both
greenhouse gases and sulphate aerosols are
consistent with observations over this period.

WMO
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OUR SIMULATIONS THAT INCLUDE ESTIMATES
OF NATURAL AND ANTHROPOGENIC FORCING
REPRODUCE THE OBSERVED LARGE-SCALE

CHANGES IN SURFACE TEMPERATURE
OVER THE 20TH CENTURY.

BUT MOM, DON'T THE
GCM CALCULATIONS
REQUIRE ACCURATE
ESTIMATES OF
FORCING? _

SHHHH || THE EMPEROR
I&HT HEAR YOU.




UNCERTAINTY PRINCIPLES
Climate sensitivity A = AT / F

The fractional uncertainty in climate sensitivity A is evaluated from
fractional uncertainties in temperature change AT and forcing F’ as:

b (4]

A reasonable target uncertainty might be:

% = 30%, e.qg., ATZXCOZ = (3 T+ 1) K

This would require uncertainties in temperature anomaly and forcing:

OAT x5F = 20%.
AT F

This imposes stringent requirements on uncertainty in aerosol forcing!



REQUIRED UNCERTAINTY IN AEROSOL FORCING

Uncertainty 1n total forcing not to exceed 20%

GHG Forcing (well mixed gases + strat and trop O3) =2.6 W m2 + 10%
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Uncertainty in aerosol forcing must be reduced by at least a factor of 3 to
meet requirements for determining climate sensitivity.



CONCLUSIONS

® Radiative forcing of climate change by anthropogenic aerosols is
substantial in the context of other forcings of climate change over the
industrial period.

Global annual mean aerosol forcing of -1 to -3 W m2 is plausible
given present understanding.

e Uncertainty in radiative forcing of climate change by anthropogenic
aerosols is the greatest source of uncertainty in forcing of climate
change.

This uncertainty precludes:
- Evaluation of models of climate change.

- Inference of climate sensitivity from temperature changes over the
industrial period.

- Informed policy making on greenhouse gases.

e Uncertainty in aerosol forcing must be reduced at least three-fold for

uncertainty in climate sensitivity to be meaningfully reduced and
bounded.



SOME CONCLUDING OBSERVATIONS

GHG concentrations and forcing are increasing.
GHGs persist in the atmosphere for decades to
centuries.

Aerosol forcing 1s comparable to greenhouse gas
forcing but much more uncertain.

Hence total forcing over the industrial period is
highly uncertain.

Hence the sensitivity of the climate system remains
highly uncertain.

Climate sensitivity will remain uncertain unless and
until aerosol uncertainty 1s substantially decreased.

Decisions must be made 1n an uncertain world. (Lack
of controls on GHG emissions 1s also a decision).






NORTHERN HEMISPHERE TEMPERATURE TREND (1000-1998)
From tree-ring, coral, and ice-core proxy records
As calibrated by instrumental measurements
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UPSCATTER FRACTION
SCATTERING OF SOLAR RADIATION BY AEROSOL PARTICLE

Upscatter fraction B is the fraction of radiation scattered into the upward hemisphere.

B= [P(®,0)dx / [P®O,0)IQ = [P®,$)d /4n

upward 4T coso<(
hemisphere





